
Overview of Beam Vibration



• Given a generalized beam we wish to solve for

– Natural Frequency ωnr

• Where r is the frequency number (1, 2, 3, …)

– Mode shapes associated with specific values of 

ωnr

• Essentially we are looking for the vertical displacement, 

y, for any given point along the beam, x

x = L

y(x)

O

x = 0



• From previous experience we know then that we 
need to find a generalized equation

• Where will give us ωnr

• Solving the solution vector {C} at ωnr will define the 
mode shapes

• To do this you need a generalized equation for vertical 
displacement, y, as a function of distance along the 
beam, x, and time, t.
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• For free vibration at a natural frequency, the motion 

of each point on the beam will be sinusoidal, but the 

amplitude of vibration will vary along the length

• Substitution of                               into

�

( )xY

x

Amplitude at position, xy

x = 0 x = L

( ) ( ) t  xY  =  t  ,xy ωcos

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++ (7)
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• This results in a generalized equation for 

displacement of y at any given point along the 

beam, x, for a given frequency of vibration 

(contained in λ) 

• HOWEVER, this contains 4 unknowns (C1, C2, 

C3 and C4) and you will therefore need a 

minimum of 4 equations to solve for them 

– Boundary conditions must be used!!!

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++
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You will therefore need to partially differentiate (7)

several times with depending on what boundary 

conditions you have

xC  x CxC  x C  =   
dX

dY
λsinhλλcoshλλsinλλcosλ 4321 ++−

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++
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Example 3 Cantilever (Clamped-pinned) Beam

x = 0 x = L

1. Boundary conditions

The boundary conditions are

Clamped end at

Pinned end at

0 = 
d

 d
  and   0 =     ,  0 = 
x

Y
Yx

Using these conditions with the previous equations results 
into the previous 4 equations 
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YOU NOW HAVE 4 EQUATIONS WITH 4 UKNOWNS!!!!
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( ) 0λcoshλsinhλcosλsin 4321 =+++= LC  L CLC  L C  =  x Y Lx
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2. Assemble into matrix form

(7a)

(7b)

(7a)

(7c)

3. Solving                         gives the Frequency Equation and its roots 

will give ωnr contained in λr

• This is complicated so we have given you the resulting Frequency Equation 

for a number of different beam types on page 5 of your notes

• But this is still difficult to solve, so we give you the numerical solutions
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Numerical values of roots λλλλr L of frequency equations

r 1 2 3 4 5 >5

Pinned-pinned ππππ 2 ππππ 3 ππππ 4 ππππ 5 ππππ r ππππ

Clamped-
clamped
& free-free

4.730 7.853 10.996 14.137 17.279 ≈≈≈≈ (r + 0.5) ππππ

Clamped-pinned
& free-pinned

3.927 7.069 10.210 13.351 16.493 ≈≈≈≈ (r + 0.25) ππππ

Clamped-free 1.875 4.694 7.855 10.996 14.137 ≈≈≈≈ (r – 0.5) ππππ

Selecting the values of λλλλr L from the above table for the 

beam of interest, the natural frequencies can be found from 

equation (5).  That is: 
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• To solve for the mode shapes at a given natural 

frequency, ωnr with r=1,2,3,… , remember that you 

have 4 equations with 4 unknowns (C1, C2, C3 and C4 )

• You also have the table for numerical values of λλλλr L

• Finally you have the equations to relate these to λλλλr
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• You should be able to solve these for the 
constants C1, C2, C3 and C4 at given natural 
frequencies (r=1,2,3,…)

• Your amplitude of displacement for any given 
point along the beam, Y(x), at a given frequency 
is then back to the general equation (7) from 
before

• Solving this at various points along the beam will 
then give you the mode shape of the beam at 
that frequency

( ) xC  x CxC  x C  =  x Y r4r3r2r1 λcoshλsinhλcosλsin +++


